If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-23=0
a = 2; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·2·(-23)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{46}}{2*2}=\frac{0-2\sqrt{46}}{4} =-\frac{2\sqrt{46}}{4} =-\frac{\sqrt{46}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{46}}{2*2}=\frac{0+2\sqrt{46}}{4} =\frac{2\sqrt{46}}{4} =\frac{\sqrt{46}}{2} $
| 5(4x+7)=-45+20 | | 2^{3x}.3^x-2^{3x}-1.3^x+1=-288 | | 6/7•x=-48 | | 1/2+3/7x=-7/5 | | 9y-(4y-23)=96 | | 17^6x=4^x-8 | | 5-3(1+p)=-5(p-4) | | 2x^2=81/4 | | 3^(4x+3)=24 | | 3x+-5+-2x=7x+1+-6x | | 6x4=5+8 | | f(5)=12-3 | | 3(8x-3)=135 | | 14-4b=34 | | 4(7-5x)=12(5-2x) | | -6k-(8k+8)=-106 | | 10+20x0+5+3=8 | | 10x^2+96x-288=0 | | 8+6m=–4m+8 | | 1/4-1/8x=7/8 | | (6c+18)/12=7 | | 3/4=w=24 | | 9=2x^{2}-5 | | 5(1-4r)=85 | | 93=19^x | | 3(2y+9)=9-2(y-9) | | 11y-6y=30 | | -2x-3(2-2x)=9+4x | | 140+35=x | | 1+2x=x+9 | | 150x^2-216=0 | | 2a-6/2=24 |